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Abstract

Semi-Supervised Learning (SSL) on graph-based
datasets is a rapidly growing area of research, but
its application to time series is difficult due to the
time dimension. We propose a flexible SSL frame-
work based on the stacking of PageRank, PCA and
Zoetrope Genetic Programming algorithms into a
novel framework: PaZoe. This self-labelling frame-
work shows that graph-based and non-graph based
algorithms jointly improve the quality of predictions
and outperform each component taken alone. We also
show that PaZoe outperforms state-of-the-art SSL al-
gorithms on three time series datasets close to real
world conditions. A first set was generated in house,
taking data from industrial graded equipment in or-
der to mimick DC motors during operation. Two
other datasets, which include the recording of ges-
tures, were taken from the public domain.
Keywords – temporal data, semi-supervised clas-

sification, PCA, PageRank, symbolic regression.

1 Introduction

The interest of classifying temporal data originates
from many real-world problems, among which clas-
sification of failure types in industrial equipment,
gesture recognition or even brainwave recognition in
EEG (electro-encephalogram) data [1–4]. The diffi-
culty of time series classification arises from the fact
that each event is associated with a sequence of ob-
servations over a period of time, and not with a single
observation as in tabular data classification. In the

context of anomaly detection and prediction, the sit-
uation is exacerbated by the rarity of the events of
interest - e.g. equipment failures - which is fortu-
nate from a cost perspective, but problematic from
the learning point of view, because the resulting im-
balanced data used for training hamper accurate pre-
dictions.

Moreover, time series classification is even harder
with extremely few labels, a common problem in Ma-
chine Learning (ML) addressed by Semi-Supervised
Learning (SSL). SSL algorithms have shown good
performance on graph-based datasets such as citation
networks [5,6] and on images datasets [7,8]. However
because of the time correlation, applying common
SSL algorithms to time series is difficult. To compen-
sate, some SSL algorithms are based on complicated
neural network models, developed explicitly for this
type of data [2, 9, 10]. These models are not always
responding to the rising demand for interpretability
which has been the focus of considerable research [11],
mostly concerned with the interpretation of “black-
box” models such as deep neural networks and, to
a lower extent, random forests [12]. Interpretabil-
ity can be enhanced by symbolic regression (SR) al-
gorithms, which link the input features to the tar-
get with explicit mathematical formulae, thus pro-
viding “model-based” interpretability. SR is mostly
treated from a genetic programming perspective [13],
although attempts from a more traditional ML angle
have been made [14]. However, there are very few
works on SR in semi-supervised mode [15].

This paper brings the following contributions: we
propose a new framework called PaZoe based on the
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stacking of two recent algorithms that have shown
good performances in previous work, namely PageR-
ank & PCA [16] (enabling self-labelling [17]) and
Zoetrope Genetic Programming [18], and we adapt
this framework to sensor data; we demonstrate that
our framework outperforms the state-of-the-art lin-
ear and neural network algorithms for SSL in terms
of accuracy on different time series datasets; in addi-
tion to public domain gesture datasets, we generated
a realistic dataset based on a DC motor for the clas-
sification of the type of motor imbalance at different
rotation speeds.

2 Context

2.1 Problem and notations

Let X = [Xi]
n
i=1 ∈ Rn×d be the matrix of input

features, with dimension d and total number of ob-
servations n. Then let {C1, . . . , Ck} be the set of k
classes, and Y = [Yi]

n
i=1 be a label matrix where

Yi = (Yi,j)
k
j=1, such that Yi,j = 1 if Xi ∈ Cj and

Yi,j = 0 otherwise. Y is composed of two parts:
a labelled one of size nl, and an unlabelled one of
size nu, typically for SSL nl � nu and Yi being
the null vector for all unlabelled data. We also de-
fine the following graph-based setup which will be
used in the sequel: A = [Ai,j ]

n,n
i,j=1 is an adjacency

matrix, D = diag(Di,i) is a diagonal matrix with
Di,i =

∑n
j=1Ai,j . The problem of semi-supervised

classification is to find an accurate classification re-
sult Ŷ = [Ŷi]

n
i=1 for Y , with Ŷi = (Ŷi,j)

k
j=1, based on

both labelled and unlabelled data where the amount
of labelled data is extremely low.

2.2 Related works

The research in SSL is split into two main areas,
according to the structure of the data. Graph-
based datasets display both node features and a
graph structure. Here, the state-of-the-art (SOTA)
algorithms are based on graph propagation strategy,
among which Label Propagation (LP) [19], Graph
Convolution Network (GCN) [5]; Instead, Non-
graph based datasets only have object features,

such as pixels for images. Here SOTA SSL algorithms
are based on the application of semi-supervised reg-
ularisation and similarity learning, such as transduc-
tive SVM (TSVM) [7], logistic regression (LR) [20],
K-nearest neighbours (KNN) [8], and GEML [21].

These SSL algorithms have been developed ac-
cording to the dataset’s nature. As a consequence,
algorithms applicable to graph-based datasets (e.g.
GCN [5], Label Propagation [19]) are not suitable
to non-graph based datasets, and conversely for non-
graph based algorithms like LR [20] or GEML [21].
Note that a semi-supervised genetic programming
like GEML is comparable only with linear algorithms
and outperforms them in the supervised regime most
of the time.

Finally, all the aforementioned SSL algorithms do
not provide a clear interpretation of the classification
results.

In order to address these issues, we propose a
combination of a linear algorithm for graph-based
SSL (PageRank & PCA (PRPCA)) with a non-linear
symbolic regression algorithm, ZGP (Zoetrope Ge-
netic Programming). The interest in PRPCA comes
from its applicability to both graph-based and non-
graph based datasets, while ZGP keeps the classifica-
tion results interpretable. We show in the experiment
that the combination of PRPCA and ZGP within
the PaZoe framework, significantly increases each al-
gorithm’s individual performance, and outperforms
SOTA algorithms on several time series datasets.

3 PaZoe framework

In our framework, we assume that any data can
be represented through a graph structure. Since
PRPCA outperforms the linear graph-based as well
as non-graph based SSL algorithms, we use it in Pa-
Zoe to extend the training set to the self-labelling
regime [17]. Then, we conjecture that the Zoetrope
mechanism in ZGP can extract useful information
by training on PRPCA predictions in a supervised
regime. Based on these assumptions, we combine
these two algorithms.
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3.1 PageRank & Principal component
analysis (PRPCA)

The main idea of PRPCA is to enrich the adjacency
matrix A by the information of estimated covariance
between objects S ∈ Rn×n. This enrichment allows
spreading information about labelled objects to un-
labelled ones. This means that even in the absence of
edge between two objects where Ai,j = 0, we can still
spread the information about labels between these
objects weighted by their covariance value. The ex-
plicit classification solution of PRPCA is given by

Ŷ =
(
I − α

(
AD−1 + δSD−1

))−1
(1− α)Y (1)

where δ ∈ (0, 1) sets the influence of S on A and
α ∈ (0, 1) is the random jump parameter for PageR-
ank. Let us note that in the normalised Ŷ if(
AD−1 + δSD−1

)
is a stochastic matrix, equation 1

is an explicit PageRank [22] problem. The classifica-
tion solution 1 is obtained through the differentiation
of the combination Laplacian regularization1, super-
vised2 and PCA3 losses. Note that the computation
of the matrix inversion can be avoided, thanks to nu-
merical iterative methods [16]. PRPCA presents the
following interesting and practical features: first, it
has an explicit classification solution (Eq. 1) enabling
the interpretation of the object’s values in each col-
umn of Y as the value of its importance in that par-
ticular class/column, through the PageRank model;
second, it can work in a distributed regime, handling
the high amount of unlabelled data without memory
issues; and finally, it can support the online learning
regime, appending data from a new observed sensor
as a new object in a graph and labeling it through its
neighbours.

3.2 Zoetrope Genetic Programming

The Zoetrope Genetic Programming (ZGP) algo-
rithm is a genetic programming approach for sym-
bolic regression (GPSR) which iteratively evolves
mathematical formulae towards the one that best

1Laplacian regularization:
∑n

j=1 Ai,j ||Ŷi − Ŷj ||22
2Supervised loss:

∑n
i=1 ||Ŷi − Yi||22

3PCA loss: ||X̄Ŷ ||22

fits the data. The particularity of ZGP among sym-
bolic regression methods lies in its formula construc-
tion, which allows efficient computations and pre-
vents models to overgrow and become complex, a
common drawback in GPSR. This construction mech-
anism is illustrated in Figure 1 and works as follows.
First, a number me of elements (E1, . . . , Eme) are
randomly selected among input features (resp. ran-
dom constants), with a 90% (resp. 10%) probabil-
ity. Then, these elements undergo mm “maturation
steps” or “stages”, which consists in applying the fu-
sion operation

f(Ei, Ej) = r · op1(Ei, Ej) + (1− r) · op2(Ei, Ej),

on couples of elements, where opi, i = 1, 2 are
operators4 uniformly chosen in a predefined set O,
and r = U [0, 1]; the result of f(Ei, Ej) replaces
either Ei or Ej . At the end of the mm stages,
the matured elements – called “zoetropes” and de-
noted by (Z1, . . . , Zme) – are linearly combined via
multinomial logistic regression penalized by Elastic
net [23]; this last step allows to jointly select the
most relevant zoetropes and optimally estimate their
weights. The operator set can be adapted to the
problem at hand, but is typically taken as O =
{+,−,×, /, cos, sin, sqrt}.

Figure 1: Illustration of ZGP’s model construction
with me = mm = 3. For the sake of readability, the
third fusion, generating (E”2, E”3) from (E′2, E

′
3) is

not represented. Note that Z3 = E”3 as no element
is left for a fusion.

Genetic programming considers models as individ-
uals of a “species”, and evolves them with random
perturbations (mutations) and by mating pairs into
new individuals (crossover). ZGP’s mutation and

4In case op1 or op2 is unary, only Ei is taken into account
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crossover are also nonstandard in GPSR: the muta-
tion consists in selecting couples of models, and re-
place the worst one with a ”mutant” of the first one,
while the crossover consists in selecting the best and
worst in a pool of mt models, and randomly prop-
agate elements and fusions of the best to the worst
model. Note that the ”worst” and “best” models are
defined with respect to their accuracy on the train-
ing set. At the end of each iteration, all the models
are evaluated on the validation set, and the best ever
is stored. Also, like PRPCA, ZGP can work in dis-
tributed regime. For the complete description of the
algorithm, see [18].

3.3 PaZoe strategy

Our PaZoe framework is given in Algorithm 1 and
consists in three main sequential steps:

1. Transforming data into graph structure. For
non-graph based datasets, where no adjacency
matrix A is available, we first generate a syn-
thetic graph structure and retrieve A by K-
nearest neighbours (KNN);

2. Labelling the unlabelled data. We then com-
pute PRPCA based on the input matrix X and
the adjacency matrix A. Predictions generated
by PRPCA consider the graph structure, which
could be valuable for stacking with existing ob-
ject features X for further training of ZGP. Also,
self-labelling [17] by PRPCA predictions extends
the training set for further ZGP training in the
supervised regime;

3. Classifying and recovering the boundary formu-
lae. We stack the input data X with the pre-
dictions from PRPCA and feed the augmented
dataset to ZGP for supervised training (where
train/test split of dataset is 70%/30%).

This framework is applicable to any kind of data.
In order to adapt it to temporal data obtained from
sensors, we propose to modify step 1 of PaZoe as
follows: we first separately train a KNN algorithm
and generate different adjacency matrices for each

type of features, e.g. the magnetometer5 and the
gyroscope6 in the DC motor dataset (see next section
for details); then we linearly combine these adjacency
matrices into the final one. Similarly in PRPCA, we
compute the covariance between objects separately
for each feature.

The outline of PaZoe with the modification for sen-
sor data is illustrated in Figure 2. The PRPCA part
of the code is publicly available through this link7.
As for ZGP, we used an open source version of the
proprietary algorithm, which is still under testing and
has not been released yet.

Figure 2: PaZoe sequence: 1) Generation of graph
structure; 2) Self-labelling by PRPCA; 3): 3a) Stack
X with PRPCA predictions; 3b) ZGP training; 4) Fi-
nal predictions from ZGP. Note, X and units therein,
refer to the dc motor dataset.

INPUT: X,A, Y , α, δ;
INITIALIZE:
X̄T

i = XT
i − 1

d

∑d
j X

T
j ∀i ∈ (1, . . . , n); S = X̄T X̄

d−1
IF: A = NaN :
A = KNN(X)

Ŷ =
(
I − α

(
AD−1 + δSD−1

))−1
(1− α)Y

X̂ = stack(X, Ŷ )
Ŷ = ZGP (X̂, Ŷ ,mp,mi,me,mm,mt)

Algorithm 1: PaZoe

5Xmga ∈ Rn×dmga where dmga is dimension of magne-
tometer

6Xdps ∈ Rn×ddps where ddps is dimension of gyroscope
7https://github.com/KamalovMikhail/PaZoe
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4 Experiments

We apply the PaZoe framework on three time series
datasets, the first generated for this work, the oth-
ers obtained from the public domain. DC motor
dataset (RPM) − generated with six classes of im-
balance failure on a real motor, by collecting data
from a sensor tile (see next section); UWaveGes-
ture (UWave) [4] − with eight classes of gestures
from (x, y, z) accelerometer features; Gesture WI-
Imote (WII) [3] − with ten classes of gestures from
(x, y, z) accelerometer features by Nintendo Wiimote.

4.1 DC motor data collection

In order to profit from a real dataset on motor fail-
ures, we conducted our own experiment to simulate
anomalies of DC motors in a production environment.
These are later used as classification targets with la-
belled data generated for training. Motor axis imbal-
ance were generated by loading weights onto a disk
plate mounted on top of the motor at varying dis-
tances from its axis. The dataset was obtained with
industrially graded equipment made of a STMicro-
electronics (STM) acquisition board8, a STM Sen-
sorTile with three sensors - accelerometer, magne-
tometer and gyroscope - and a SD card for data stor-
age. The three components (x, y, z) of each sensor
signal were acquired at the default rate of 20 Hz,
kept throughout. We recorded three rotation speeds,
620, 420 and 220 RPM. We chose these speeds to
show how the performances tend to drop the lower
the speed, making the discrimination of anomalies
more difficult.

The three sensor quantities and units are as follows:

• Accelerometer (mg) - acceleration values in
units of mg, where g = 9.81 m/s2 is the gravity
acceleration;

• Magnetometer (mGa) - generally used for
tracking of moving objects - with values in mGa,
where ’Ga’ means gauss and 1 gauss = 10−4T ;

8Nucleo G431RB ST L6230 with a GBM2804H brushless
motor

• Gyroscope (DPS) - measures rotations in DPS
(deg. per seconds), e.g., one needs to convert
to rad/s if time or geometric calculations are
needed.

The duration of each experiment is close to one
(∼ 1) minute.9

4.2 Data utilization strategy

We used the following train/test split strategy for all
of these datasets: 20 labelled objects for each class
for training and the rest for testing. Note that all
these datasets are balanced, e.g. the number of ob-
jects in each class is similar. This strategy is standard
for SSL learning algorithms [5, 19]. Also, we have to
mention that for the DC motor dataset, we consid-
ered objects as sensor quantities (e.g. accelerometer,
magnetometer, gyroscope) at each moment in time
(recording individual data points). In other words,
the length of time series (l) for the DC motor dataset
was equal to l = 1. In practice, it allows us to check
the motor’s state and signal imbalance failures at any
moment. This is because the position of the motor is
stable but, at a successive time instant it might not
be.

Since WII and UWave datasets have only observa-
tions from accelerometers, we considered an object as
a time series with length equal to the motion’s length
(e.g. following the time evolution of the three differ-
ent coordinates, (x, y, z) during the complete gesture
recording). These three datasets, summarised in Ta-
ble 1, and the code for their processing are available
through the provided link10. Note that the number
of observation for the RPM dataset slightly differs
depending on the speed, due to the presence of miss-
ing values (especially at the end of each observation
time).

9Each datapoint has a timestamp dd/mm/yyyy
hh:mm:ss.xxx, with differences between adjacent points
from 2 to 5 ms around the nominal 50 ms. As the time scale
is approximately uniform, the absolute value of the time can
be safely ignored and timestamps swapped for indexes as
necessary.

10https://github.com/KamalovMikhail/PaZoe
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Table 1: Dataset statistics
620,420,

UWave Wii
220 RPM

n No. observ. ∼6100 4478 1000
nl No. labels 120 160 200
nl/n Ratio of labels ∼ 1.9% 3.6% 20%
l Seq. length 1 315 326
k No. classes 6 8 10
d No. features 9 315 326

4.3 Results

For a fair comparison, we used three types of algo-
rithms: (1) SSL graph-based such as LP, PRPCA
and GCN (is a neural netowrk); (2) SSL non-graph
based, such as LR and KNN; and (3) supervised algo-
rithms such as SVM, ZGP and the combination of al-
gorithms such as PRPCA & LR (PaLR) and PRPCA
& SVM (PaSVM). For each of these algorithms, we
took the best hyperparameters defined in their re-
spective works and for PRPCA we used α = 0.9,
δ = 10−3. We use accuracy as the performance met-
ric since all datasets are balanced. We report the
average accuracy on the test set, taken over 20 ran-
dom splits (k-folds strategy).

The results of PaZoe on the DC motor dataset ob-
tained with various features combinations are pre-
sented in Table 2. It shows that the best classifi-
cation accuracy is achieved by using magnetometer
(mGa) or gyroscope (dps) with respect to RPM. Since
magnetometer (mGa) and gyroscope (dps) separately
provide a high classification accuracy for the DC mo-
tor dataset, we use the best of them for each RPM (ie.
dps for 620, 420 rpm and mGa for 220 RPM) to train
the rest of the algorithms. The results of PaZoe com-
pared with all the other algorithms on the DC motor
dataset are shown in Table 3, along with the perfor-
mance on the WII and UWave datasets. Several com-
ments can be made on those results: first, PRPCA
clearly outperforms the other SSL algorithms on all
three datasets; second, combining PRPCA with a su-
pervised classification algorithm only leads to an im-
provement with ZGP (PaZoe); third, PaZoe consider-
ably outperforms its separate components (PRPCA,
ZGP) as well as the rest of the SSL and supervised

algorithms on all three datasets, even with only one
sensor (accelerometer) in the gesture datasets.

Table 2: Classification accuracy for DC motor
dataset

dps,
mGa,
dps

RPM Method mGa, mGa mg dps
mg

620

PRPCA 61.2 19.2 44.2 71.6 68.2
ZGP 48.9 16.2 35.7 60.1 63.2
PaLR 18.4 17.2 19.5 42.9 18.8
PaSVM 46.7 17.0 41.2 65.8 66.4
PaZoe 65.6 97.0 96.8 98.8 79.3

420

PRPCA 38.8 60.8 28.3 66.2 51.8
ZGP 62.4 64.6 29.2 62.3 65.2
PaLR 18.0 28.7 22.7 35.2 17.9
PaSVM 18.7 51.1 26.0 52.5 44.2
PaZoe 63.5 96.2 95.2 97.8 67.2

220

PRPCA 30.6 66.3 20.1 29.5 37.2
ZGP 20.2 18.5 16.8 26.1 27.1
PaLR 18.5 16.4 17.1 19.0 17.4
PaSVM 19.8 61.2 18.8 16.5 33.0
PaZoe 36.2 94.2 90.6 93.1 44.8

5 Conclusions

The problem of label scarcity in data gathered from
industrial equipment under working conditions is ad-
dressed by generating labels via an efficient SSL algo-
rithm (PRPCA). Its outcomes are then fed into the
GPSR based algorithm ZGP, which provides inter-
pretable predictions expressed by a mathematically
explicit formula. The working of the two algorithms
have been briefly explained and their joint use de-
scribed as the PaZoe framework. It has been shown
that the use of this stacked framework provides a
combined performance which overcomes the two al-
gorithms individually. These results were obtained
on realistic data, partly generated for this purpose
with industrially graded equipment, partly on sen-
sor data available from the public domain. We ob-
serve that, similarly to other SSL algorithms (like
LP, GCN, KNN) PaZoe does not assume any kind
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Table 3: Classification accuracy

Dataset
620 420 220

WII UWave
RPM RPM RPM

PRPCA 71.6 66.2 66.3 67.8 70.1
LP 31.2 17.2 16.6 15.2 12.4
KNN 28.6 33.9 60.1 23.7 58.8
GCN 16.9 21.6 18.3 16.7 18.3
ZGP 60.1 62.3 26.1 14.6 17.4
LR 29.7 27.9 16.8 52.9 55.8
SVM 64.1 38.9 25.6 43.3 68.3

PaLR 42.9 35.2 16.4 34.9 62.8
PaSVM 65.8 52.5 61.2 37.3 69.1
PaZoe 98.8 97.8 94.2 71.8 72.3

of data distribution (or even require the data to be
i.i.d), while it performs better than those.

In terms of potential future work, we want to eval-
uate PaZoe for handling the case when we lose/add
some features (channels) from a sensor tile during the
training. In particular, we will test the use of pre-
trained ZGP models when adding/removing a sensor
or when handling data streams (e.g. online learning).
Also, we want to develop a non-linear distributed ver-
sion of PRPCA to improve the self-labelling for Pa-
Zoe. Finally, for practical implementation and sim-
pler parametrisation, it would be interesting to di-
rectly include PRPCA into ZGP instead of running
the two algorithms separately in sequence.
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