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Before we start

Before we start

Jobs in ML/AI

”There is the royal way, getting an AI job in a company
and the imperial way, getting an AI job in academia”

Stéphane Canu
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Before we start

Before we start

Jobs in ML/AI

Data engineer ML engineer Data Scientist AI researcher Data analyst
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Before we start

Before we start

My personal experience
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Before we start

AI in telecom and at Ericsson

▶ AI is progressively being integrated into 5G and 6G networks

▶ AI & Systems team started in Paris area (near Saclay) in November

▶ Main topics: reinforcement learning, transfer learning, sparse models
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Background on the ℓ1 penalty Sparse linear regression

Motivational example: Brain Computer Interface (BCI)

BCI Competition IV, Dataset 4

▶ Data: Recordings of ECoG brain signals and of simultaneous finger flexion of
a subject (using a glove)

▶ Objective: predict movement (angle) of the 5 fingers of the subject from its
recorded ECoG

▶ Best performances (at the time!) were obtained using a linear model
[Tangermann et al., 2012, Flamary and Rakotomamonjy, 2012]
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Background on the ℓ1 penalty Sparse linear regression

Linear regression

Linear regression model
Find w = (w1, . . . ,wd) ∈ Rd such
that

yi =
d∑

j=1

wjxi,j+σεi , i = 1, . . . , n

∣∣∣∣∣∣
yi ∈ R
xi = (xi,1, . . . , xi,d ) fixed, d < n
εi ∈ R, E[εi ] = 0, E[ε2i ] = 1

S
o
u
rc
e:

[H
a
st
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a
l.
,
2
0
0
8
]

Predictions
Once we estimate the linear coefficient vector, the predictions for a new
observation xnew is given by:

ŷ =
d∑

j=1

ŵjxnew ,j = x⊤new ŵ
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Background on the ℓ1 penalty Sparse linear regression

Notations

X =



x1 1
x2 1
...

...
xi 1
...

...
xn 1


=



x1,1 x1,2 . . . x1,j . . . x1,d 1
x2,1 x2,2 . . . x2,j . . . x2,d 1
...

...
...

...
...

...
...

xi,1 xi,2 . . . xi,j . . . xi,d 1
...

...
...

...
...

...
...

xn,1 xn,2 . . . xn,j . . . xn,d 1


, y =



y1
y2
...
yi
...
yn



▶ xi = (xi,1, xi,2, . . . , xi,j , . . . xi,d)
⊤ denotes the features for sample i

▶ xj = (x1,j , x2,j , . . . , xi,j , . . . , xn,j)
⊤ denotes variable j
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Background on the ℓ1 penalty Sparse linear regression

Least Squares solution

Optimization problem
We want to solve

min
w

J(w) with J(w) =
1

2
||y − Xw||2

where J(w) is a convex function.

⇒ Find the parameter w that leads to a null gradient:

∇J(ŵ) = 0 ⇔ −X⊤y + X⊤Xŵ = 0

The solution for Least Squares is the vector ŵls defined as

ŵls =
(
X⊤X

)−1
X⊤y

Assumptions
X is a matrix of rank d (or d + 1 if bias included) which means that X⊤X is
invertible.
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Background on the ℓ1 penalty Sparse linear regression

Sparse linear regression

Issue
What if only a small number of variables are relevant?

Problems

ŷ = f (x) =
∑
j∈J

wjxj

▶ Find a set J of relevant variables

▶ Estimate the corresponding wJ = (wj)j∈J

▶ For the others: wj = 0 ∀j /∈ J
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ŷ = f (x) =
∑
j∈J

wjxj =
d∑

j=1

wjxj

▶ Find a set J of relevant variables

▶ Estimate the corresponding wJ = (wj)j∈J

▶ For the others: wj = 0 ∀j /∈ J

A. Boisbunon Practical Applications of the L1 penalty StatLearn, April 2022 12 / 80



Background on the ℓ1 penalty Sparse linear regression

Sparse linear regression

What we would like to do: min
w∈Rd

1

n

n∑
i=1

(yi − x⊤i w)2

s.t. #{wj ̸= 0} ≤ k

Issues
▶ NP-hard problem

▶ difficult1 for d > 40

1One way to avoid the computational burden is to use greedy algorithms
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Background on the ℓ1 penalty Sparse linear regression

Sparse linear regression

First approaches:
Best subset: Leaps and bounds (Furnival and Wilson, 1974), branch and bound
Statistical tests:

▶ Statistical tests for ŵj = 0 (Z-score)

▶ Statistical tests for J vs J ′ (F-tests)

Updating set I by adding/removing a variable:

▶ Forward/backward/stagewise selection [Efroymson, 1960]

Seminal works on ℓ1 penalty

▶ Linear inversion for seismic data [Santosa and Symes, 1986]

▶ Soft-thresholding [Donoho, 1995]

▶ Least Absolute Shrinkage and Selection Operator (Lasso) [Tibshirani, 1996]
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Background on the ℓ1 penalty Sparse linear regression

Regularization with the ℓ2 penalty

Before the ℓ1 penalty, interesting works had been obtained with the ℓ2 penalty
[Hoerl and Kennard, 1970]

Optimization problems

min
w∈Rd

1

n

n∑
i=1

(yi − x⊤i w)2 s.t.
d∑

j=1

w2
j ≤ t

min
w∈Rd

{
1

n
∥y − Xw∥22 + λ∥w∥22

}
▶ Reduce variance by adding bias

Regularization constraint
Squared error
Problem solution

S
o
u
rc
e:

R
.
F
la
m
ar
y
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Background on the ℓ1 penalty Sparse linear regression

Regularization with the ℓ1 penalty

Optimization problems

min
w∈Rd

1

n

n∑
i=1

(yi − x⊤i w)2 s.t.
d∑

j=1

|wj | ≤ t

min
w∈Rd

{
1

n
∥y − Xw∥22 + λ∥w∥1

}
▶ Convex relaxation of the ℓ0 norm

▶ Simultaneous selection of variables and
estimation

▶ The ℓ1 norm promotes sparsity

Regularization constraint
Squared error
Problem solution

S
o
u
rc
e:

R
.
F
la
m
ar
y
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Background on the ℓ1 penalty Sparse linear regression

Diabetes example (sklearn)

Data
▶ n = 442 diabetes patients

▶ target = quantitative measure of disease progression one year after baseline

▶ d = 10 input variables: age, sex, body mass index, average blood pressure,
and six blood serum measurements

from sklearn.datasets import load_diabetes

data = load_diabetes()

X = data.data

y = data.target

features = data.feature_names
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Background on the ℓ1 penalty Sparse linear regression

Diabetes example (sklearn)

Estimation of the disease progression

from sklearn.linear_model import Lasso

lasso = Lasso(alpha=1) # default value

lasso.fit(Xtrain, ytrain)

ypred_lasso = lasso.predict(Xtest)
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Background on the ℓ1 penalty Properties of the Lasso

Properties of the Lasso
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Background on the ℓ1 penalty Properties of the Lasso

Properties of the Lasso

Special case: X orthogonal
When X is orthogonal, we have: X⊤X = Id , that is x⊤j xj = 1 and x⊤j xl = 0 for
l ̸= j

A. Boisbunon Practical Applications of the L1 penalty StatLearn, April 2022 21 / 80



Background on the ℓ1 penalty Properties of the Lasso

Properties of the Lasso

Special case: X orthogonal
When X is orthogonal, we have: X⊤X = Id , that is x⊤j xj = 1 and x⊤j xl = 0 for
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Example: Basis of discrete cosine
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Properties of the Lasso

Special case: X orthogonal
When X is orthogonal, we have: X⊤X = Id , that is x⊤j xj = 1 and x⊤j xl = 0 for
l ̸= j

Example: Basis of discrete Fourier

S
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Background on the ℓ1 penalty Properties of the Lasso

Properties of the Lasso

Special case: X orthogonal
When X is orthogonal, we have: X⊤X = Id , that is x⊤j xj = 1 and x⊤j xl = 0 for
l ̸= j

Example: basis of wavelets

S
o
u
rc
e:

[T
ar
iq
u
e,

2
0
1
6
]
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Background on the ℓ1 penalty Properties of the Lasso

Properties of the Lasso

Special case: X orthogonal

▶ Least squares solution:

ŵls = (X⊤X)−1X⊤y = X⊤y ŵ ls
j = x⊤j y ⇒ ŷ ls = xnewX

⊤y

▶ Lasso solution:

ŵ lasso
j = (ŵ ls

j − λsgn(ŵ ls
j ))1{|ŵ ls

j |>λ}

= sgn(ŵ ls
j )max

(
|ŵ ls

j | − λ, 0
)

ŷ lasso = x⊤new ŵ
lasso
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Background on the ℓ1 penalty Properties of the Lasso

Example with DCT

▶ data = periodic signal with 2 frequencies (e.g. temperature, tides)

▶ n = 5000 measurements

▶ noise can come from measurements or external conditions
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Background on the ℓ1 penalty Properties of the Lasso

Solving the Lasso (X general)
Solving a differentiable and convex optimization problem is usually performed in
2 steps:

▶ derive the function to optimize (e.g. in Lagrangian form)

▶ finding its root by closed form or iteratively e.g. with gradient descent

Convexity of the Lasso

min
w∈Rd

{
Jlasso =

1

n
∥y − Xw∥22 + λ∥w∥1

}
▶ Sum of 2 convex functions = convex function

▶ w ∈ Rd : convex domain

⇒ The problem is therefore convex (but not strictly convex)

⇒ Any local minimum is also a global minimum

Nondifferentiability of the Lasso

▶ The absolute value is nondifferentiable in 0
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Background on the ℓ1 penalty Properties of the Lasso

Subgradients and subdifferential

−1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1
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−1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

▶ The notion of gradient can be extended for nondifferentiable functions

▶ For a convex function f (x), g is a subgradient of f in x0 if

f (x) ≥ f (x0) + g⊤(x− x0)

▶ The set of all subgradients at x0 is the subdifferential ∂f (x0)

▶ x0 is a minimum of the convex function f if 0 ∈ ∂f (x0)
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Background on the ℓ1 penalty Properties of the Lasso

Subdifferential for the ℓ1 penalty

−1 −0.5 0 0.5 1 1.5
−1

−0.5
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1.5
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2.5
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1.5−

!

!

!

!

! !

The subdifferential of the absolute value is of the form

∂|x | =
{

α ∈ ]− 1, 1[ if x = 0
sign(x) if x ̸= 0
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Background on the ℓ1 penalty Properties of the Lasso

Subdifferential for the ℓ1 penalty
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The subdifferential of the ℓ1 penalty is of the form

∂∥w∥1 = (∂|wj |)dj=1 =

(
sign(wJ)

αJc

)
with Jc the complement pf J (assuming we know J and the coefficients are
reordered)
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Background on the ℓ1 penalty Properties of the Lasso

Optimality conditions of the Lasso

w⋆ is a solution of the optimization problem if

0 ∈ ∂Jlasso(w
⋆) with Jlasso(w) =

1

2
∥y − Xw∥2 + λ∥w∥1

This can be reformulated as the following condition

−X⊤(y − Xw⋆) + λg = 0 with g ∈ ∂∥w⋆∥1

Conditions on the components of w⋆

w⋆
j ̸= 0 ⇒ −x⊤j (y − Xw⋆) + λsign(w⋆

j ) = 0

w⋆
j = 0 ⇒ |x⊤j (y − Xw⋆)| ≤ λ

▶ xj is the jth column of X (feature j).
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Background on the ℓ1 penalty Properties of the Lasso

Lasso with Python

Scikit-Learn
▶ sklearn.linear model.Lasso: coordinate descent algorithm

▶ sklearn.linear model.SGDRegressor: stochastic gradient descent

▶ sklearn.linear model.Lars: least angle regression

Other Python toolboxes

▶ pylops: ISTA, FISTA and others

▶ spams, cyanure: stochastic gradient descent

▶ celer.Lasso, celer.celer path: dual extrapolation
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Background on the ℓ1 penalty Properties of the Lasso

Solvers for Lasso

Coordinate descent (CD)

▶ Optimize each component of w independently
until convergence

▶ Very fast for sparse solutions

from sklearn.linear_model import Lasso

lasso = Lasso(alpha=1) # default value

lasso.fit(Xtrain, ytrain)

ypred_lasso = lasso.predict(Xtest)
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Background on the ℓ1 penalty Properties of the Lasso

Solvers for Lasso

Proximal gradient descent (PGD)

▶ Each iteration is a simple soft thresholding of
the parameter

w(l+1) = Sλ(w
(l) − γ∇L(y,Xw(l)))

where Sλ(x) = (x − λ)+ is the soft-thresholding
operator

▶ (F)ISTA: (Fast) Iterative Soft-Thresholding
Algorithm [Daubechies et al., 2010,
Beck and Teboulle, 2009]

▶ Can be coupled with active sets to speedup
sparse solutions
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Background on the ℓ1 penalty Properties of the Lasso

Solvers for Lasso

Stochastic gradient descent (SGD)

▶ Based on proximal algorithms

▶ Compute the gradient for one sample and
optimize for the whole dataset

▶ Very efficient

from sklearn.linear_model import SGDRegressor

lassoSGD = SGDRegressor(penalty='l1', alpha=1)

lassoSGD.fit(Xtrain, ytrain)

ypred_lassoSGD = lassoSGD.predict(Xtest)
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Background on the ℓ1 penalty Properties of the Lasso

Regularization path

Aim: find the solution to Lasso for all λ

▶ Compressed sensing: Basis pursuit denoising [Chen and Donoho, 1994]

▶ Statistics: Least Angle Regression (LAR) [Efron et al., 2004]

Recall the optimality condition for nonzero coefficients:

−X⊤
J (y − XJw

⋆
J ) + λsign(w⋆

J ) = 0

Then, assuming we know J and sign(wJ) (and we can easily compute the inverse
matrix):

w⋆
J = (X⊤

J XJ)
−1
(
X⊤

J y − λsign(w⋆
J )
)

w∗ is actually linear by parts with respect to λ: we only need to compute it for
transition points λ
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Background on the ℓ1 penalty Properties of the Lasso

Regularization path

Aim: find the solution to Lasso for all λ

▶ Compressed sensing: Basis pursuit denoising [Chen and Donoho, 1994]

▶ Statistics: Least Angle Regression (LAR) [Efron et al., 2004]

Algorithm
Start: w(0) = 0, J(0) = ∅, λ(0) = maxj |x⊤j y|
Repeat

1. Find vector xj most correlated with residual

argmax |x⊤j (y − XJ(l)w
(l)

J(l))|

2. Add it to the set of relevant features

J(l+1) ← J(l) ∪ {j}

3. Update the coefficients w
(l+1)

J(l+1) and λ(l+1)

until stopping rule.
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Background on the ℓ1 penalty Properties of the Lasso

Diabetes example (sklearn)
from sklearn.linear_model import LassoLars, Lars

# Different variants of Lasso regularization path

lasso_lars = LassoLars() # for full path: set alpha=0

lasso_lars.fit(Xtrain, ytrain)

lars = Lars()

lars.fit(Xtrain, ytrain)
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Background on the ℓ1 penalty Properties of the Lasso

Choosing λ

λ tunes the sparsity level:

▶ λ = 0 ⇒ ŵlasso = ŵls (all variables are selected)

▶ λ→∞ ⇒ ŵlasso = 0 (no variable is selected)
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Background on the ℓ1 penalty Properties of the Lasso

Choosing λ

λ tunes the sparsity level:

▶ λ = 0 ⇒ ŵlasso = ŵls (all variables are selected)

▶ λ→∞ ⇒ ŵlasso = 0 (no variable is selected)

Measuring the MSE on a different subset

▶ Validation: estimate ŵλ on train set It , find λ minimizing MSE on validation
set Iv

λ∗ = argmin
λ≥0

1

nv

∑
i∈Iv

(yi − x⊤i ŵλ)
2

▶ Cross-validation: repeat on K different train/valid partitions

λ∗ = argmin
λ≥0

1

K

K∑
k=1

1

nv

∑
i∈I

(k)
v

(yi − x⊤i ŵλ)
2
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Background on the ℓ1 penalty Properties of the Lasso

Choosing λ

λ tunes the sparsity level:

▶ λ = 0 ⇒ ŵlasso = ŵls (all variables are selected)

▶ λ→∞ ⇒ ŵlasso = 0 (no variable is selected)

Information Criteria
Use the same set for both ŵλ and λ

▶ Mallow’s Cp/Akaike Information Criterion (AIC)

λ∗ = argmin
λ≥0

1

nt

∑
i∈It

(yi − x⊤i ŵλ)
2 + 2kλσ̂

2

▶ Bayes Information Criterion (BIC)

λ∗ = argmin
λ≥0

1

nt

∑
i∈It

(yi − x⊤i ŵλ)
2 + log(nt)kλσ̂

2

Note: true here because we consider Gaussian errors
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Background on the ℓ1 penalty Properties of the Lasso

Diabetes example (sklearn)
from sklearn.linear_model import LassoLars, LassoLarsCV, LassoLarsIC

lasso_lars = LassoLars()

lasso_lars.fit(Xtrain, ytrain)

lasso_larsCV = LassoLarsCV() # with cross-validation

lasso_larsCV.fit(Xtrain, ytrain)

lasso_larsAIC = LassoLarsIC() # with AIC or BIC

lasso_larsAIC.fit(Xtrain, ytrain)

lasso_larsBIC = LassoLarsIC(criterion='bic')

lasso_larsBIC.fit(Xtrain, ytrain)
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Background on the ℓ1 penalty Properties of the Lasso

Choosing λ
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Background on the ℓ1 penalty Properties of the Lasso

Choosing λ

Issue: Lasso’s bias increases with λ
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Background on the ℓ1 penalty Sparse linear classification

Sparse linear classification

The ℓ1 penalty can also be applied to classification with other loss functions

min
w∈Rd

1

n

n∑
i=1

L(yi , xiw) + λ∥w∥1

Binary classification
Target takes values: yi ∈ {−1, 1}
▶ Logistic loss

L(y , xw) = log(1 + exp(−yxw))

▶ Squared hinge loss (SVM type)

L(y , xw) = max(0, 1− yxw)2

S
o
u
rc
e:
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,
2
0
0
8
]
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Background on the ℓ1 penalty Sparse linear classification

Sparse linear classification

The ℓ1 penalty can also be applied to classification with other loss functions

min
w∈Rd

1

n

n∑
i=1

L(yi , xiw) + λ∥w∥1

Multiclass classification

Target takes values: yi ∈ {1, . . . ,K},
K = no. classes
W ∈ Rd×K

▶ Multinomial logistic regression

L(y , xW) = −1

n

n∑
i=1

log
K∑

k=1

ex
⊤
i (wk−wyi )

S
o
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rc
e:
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,
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0
0
8
]
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Background on the ℓ1 penalty Sparse linear classification

Breast cancer example (sklearn)

Data
▶ n = 569 patients

▶ target = detect if mass is malign or benign

▶ d = 30 input variables: mean, std, and “worst” or largest of features (radius,
area, texture, perimeter, ...) extracted from images

from sklearn.datasets import load_breast_cancer

data = load_breast_cancer()

X = data.data

y = data.target

features = data.feature_names

A. Boisbunon Practical Applications of the L1 penalty StatLearn, April 2022 39 / 80



Background on the ℓ1 penalty Sparse linear classification

Breast cancer example (sklearn)

Data
▶ n = 569 patients

▶ target = detect if mass is malign or benign
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Background on the ℓ1 penalty Sparse linear classification

Breast cancer example (sklearn)
Estimation of malignity the mass

from sklearn.linear_model import LogisticRegression

l1 = LogisticRegression(penalty='l1', solver='saga', C=1)

l1.fit(Xtrain, ytrain)

ypred_l1 = l1.predict(Xtest)
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Background on the ℓ1 penalty Sparse linear classification

L1 classification with Python

Scikit-Learn
▶ sklearn.linear model.LogisticRegression: SAGA/liblinear solver

▶ sklearn.linear model.SGDClassifier: stochastic gradient descent

▶ sklearn.svm.LinearSVC(penalty=’l1’, dual=False):

✗ regularization path algorithms do not work well here (not piecewise linear):
need to compute on a grid

Other Python toolboxes

▶ cyanure: stochastic gradient descent

▶ celer.LogisticRegression, celer.celer path: dual extrapolation
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Background on the ℓ1 penalty Sparse linear classification

Regularization path
from sklearn.linear_model import LogisticRegression

alpha_grid = np.logspace(-5, 2.4, num=50) # Define a grid

l1_grid = LogisticRegression(penalty='l1', solver='saga', C=1)

coefs_grid = np.zeros((len(l1.coef_[0]), len(alpha_grid)))

for i in range(len(alpha_grid)):

l1_grid.set_params(C=1/alpha_grid[i])

l1_grid.fit(Xtrain, ytrain)

coefs_grid[:, i] = l1_grid.coef_[0]
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Extensions of the ℓ1 penalty

Outline
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Extensions of the ℓ1 penalty Other sparse penalties

Sparse penalties

Issue
Lasso is biased, especially for high values of λ (thus very sparse models)

▶ Can we find better penalties?

Sparse optimization problem

min
w∈Rd

1

n
∥y − Xw∥22 + λ

d∑
j=1

h(|wj |)


▶ h : R+ 7→ R+ is monotously increasing

▶ h(|wj |) is nondifferentiable in 0 and assures sparsity

▶ h(·) does not need to be convex
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Extensions of the ℓ1 penalty Other sparse penalties

Adaptive Lasso
Convex for fixed weights [Zou, 2006]

min
w∈Rd

1

n
∥y − Xw∥22 + λ

d∑
j=1

αj |wj |

Penalty shape

hj(x) = αjx with e.g. αj = |ŵ ls
j |−a

Thresholding

ŵ adalasso
j = max

(
ŵ ls
j −

λsgn(ŵ ls
j )

|ŵ ls
j |a

, 0

)
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Extensions of the ℓ1 penalty Other sparse penalties

Reweighted ℓ1

Weights are not fixed: nonconvex [Candes et al., 2008]

min
w∈Rd

1

n
∥y − Xw∥22 + λ

d∑
j=1

αj |wj |

Algorithm
Iterate between solving a weighted lasso and
updating the weights

ŵ(l) = min
w

∥α̂(l)w∥1 s.t. y = Xw

α̂
(l+1)
j =

1

|ŵ (l)
j |+ ϵ

, ϵ > 0

▶ ϵ ensures stability

S
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Extensions of the ℓ1 penalty Other sparse penalties

Elastic net (ℓ1 − ℓ2)
Strictly convex [Zou and Hastie, 2005]

min
w∈Rd

1

n
∥y − Xw∥22 + λ1

d∑
j=1

|wj |+ λ2

d∑
j=1

w2
j

Penalty shape

h(x) = x + ρx2, ρ = λ2/λ1

Thresholding

ŵ enet
j =

1√
1 + ρλ

ŵ lasso
j
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Extensions of the ℓ1 penalty Other sparse penalties

Adaptive elastic net
Convex for fixed weights, otherwise nonconvex [Zou and Zhang, 2009]

min
w∈Rd

1

n
∥y − Xw∥22 + λ1

d∑
j=1

αj |wj |+ λ2

d∑
j=1

αjw
2
j

Penalty shape

hj(x) = αjx + ρ(αjx)
2

with e.g. αj = |ŵ enet
j |−a

Thresholding

ŵ adanet
j =

1√
1 + ρλ

ŵ adalasso
j

A. Boisbunon Practical Applications of the L1 penalty StatLearn, April 2022 49 / 80



Extensions of the ℓ1 penalty Other sparse penalties

Minimax Concave Penalty (MCP)
Nonconvex penalty [Zhang, 2010], a.k.a semisoft [Gao and Bruce, 1995] or firm
shrinkage for X orthogonal

min
w∈Rd

1

n
∥y − Xw∥22 + λ

d∑
j=1

h(|wj |)

Penalty shape

h(x) = min

(
x − x2

2aλ
,
aλ

2

)
,

with a > 1

Thresholding

ŵmcp
j =

a

a− 1
ŵ lasso

j 1{|ŵ ls
j |≤aλ}

+ŵ ls
j 1{|ŵ ls

j |>aλ}
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Extensions of the ℓ1 penalty Other sparse penalties

Smoothly Clipped Absolute Deviation (SCAD)
Nonconvex penalty [Fan and Li, 2001]

min
w∈Rd

1

n
∥y − Xw∥22 + λ

d∑
j=1

h(|wj |)

Penalty shape

h(x) = x1{x≤λ} +
(x − λ)2

2(a− 1)λ
1{λ<x≤aλ}

+
(a+ 1)λ

2
1{x>aλ}

with a > 2

Thresholding

ŵ scad
j =


ŵ lasso

j if |ŵ ls
j | ≤ 2λ

a
a−2

ŵ lasso
j if 2λ < |ŵ ls

j | ≤ aλ

ŵ ls
j if |ŵ ls

j | > aλ
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Extensions of the ℓ1 penalty Other sparse penalties

ℓp-norm, 0 < p < 1
[Daubechies et al., 2010]

min
w∈Rd

1

n
∥y − Xw∥22 + λ

d∑
j=1

|wj |p, 0 < p < 1

Penalty shape

h(x) = xp

Proximal operator

x = sign(x)θ s.t. θ + pθp−1 = |x |

Ingrid Daubechies
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Extensions of the ℓ1 penalty Other sparse penalties

ℓp-norm, 0 < p < 1
[Daubechies et al., 2010]

min
w∈Rd

1

n
∥y − Xw∥22 + λ

d∑
j=1

|wj |p, 0 < p < 1

Penalty shape

h(x) = xp

Proximal operator

x = sign(x)θ s.t. θ + pθp−1 = |x |

Il
lu
st
ra
ti
o
n
:
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,
2
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4
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Extensions of the ℓ1 penalty Other sparse penalties

Log-sum penalty (LSP)
[Lobo et al., 2007, Candes et al., 2008]
Proximity operator : [Prater-Bennette et al., 2021]

min
w∈Rd

1

n
∥y − Xw∥22 + λ

d∑
j=1

log

(
1 +
|wj |
ϵ

)

Penalty shape

h(x) = log(1 + x/ϵ)

Thresholding

√
λ ≤ ϵ
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Extensions of the ℓ1 penalty Other sparse penalties

Log-sum penalty (LSP)
[Lobo et al., 2007, Candes et al., 2008]
Proximity operator : [Prater-Bennette et al., 2021]

min
w∈Rd

1

n
∥y − Xw∥22 + λ

d∑
j=1

log

(
1 +
|wj |
ϵ

)

Penalty shape

h(x) = log(1 + x/ϵ)

Thresholding

√
λ > ϵ
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Extensions of the ℓ1 penalty Other sparse penalties

Choice of penalty
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Extensions of the ℓ1 penalty Other sparse penalties

Other interesting sparse penalties

▶ Group-Lasso [Yuan and Lin, 2006]: promote sparsity on groups of variables

Ω(w) =
G∑

g=1

∥wJg ∥Kg =
G∑

g=1

(w⊤
JgKgwJg )

1/2

▶ Fused lasso [Tibshirani et al., 2005] / Total Variation [Acar and Vogel, 1994]:
encourages piecewise constant signals

Ω(w) =
∑
j ̸=l

|wj −wl |
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Extensions of the ℓ1 penalty Optimality conditions and solvers

Optimality conditions

Sparsity for convex penalties

min
w∈Rd

{
∥y − Xw∥22 + λΩ(w)

}
, Ω(w) =

d∑
i=1

ω(wi ) convex

▶ Non-differentiability in w = 0 with subgradient condition

0 ∈ ∂0Ω(w) = {g ∈ Rn \ Ω(w)− Ω(0) ≥ g⊤(w − 0)}

ℓ1-penalty:

▶ Subgradient condition

ω(w) = |w | ⇒ ∂0ω(w) = (−1, 1)

▶ Optimality condition

|
(
X⊤(y − Xw)

)
j
| ≤ λ ∀1 ≤ j ≤ p
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Extensions of the ℓ1 penalty Optimality conditions and solvers

Optimality conditions

Sparsity for non-convex penalties

min
w∈Rd

{
1

n
∥y − Xw∥22 + λΩ(w)

}
, Ω(w) = ∥w∥1 − h(w)

▶ Non-diff. in w = 0 with Difference of Convex (DC) condition

∂0h(w) ⊂ X⊤
J (y − Xw) + ∂0∥w∥1(w)

Log sum penalty (LSP):

ω(w) = log(1 + |w |/ϵ)

▶ Optimality condition

|
(
X⊤(y − Xw)

)
j
| ≤ λ/ϵ ∀1 ≤ j ≤ p

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

h
!
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5
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Extensions of the ℓ1 penalty Optimality conditions and solvers

Sparse penalties with Python

Scikit-Learn
▶ Elastic net: regression, classification, multitask

Other Python toolboxes
▶ cyanure:

▶ Elastic net
▶ fused lasso
▶ group-lasso

▶ celer:
▶ group-lasso (reg)
▶ weighted-ℓ1 (reg/classif)

▶ yagml, picasso
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Applications of the ℓ1 penalty
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Applications of the ℓ1 penalty

Applications of the ℓ1 penalty

Many types of problems can be rewritten as a sparse linear problem

Transforming the input variables into new features

▶ Additive models

f (x) =
d∑

j=1

wjϕj(xj)

▶ Modeling interactions between variables

f (x) =
d′∑

j′=1

wj′ϕj′(x)
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Applications of the ℓ1 penalty

Applications of the ℓ1 penalty

Many types of problems can be rewritten as a sparse linear problem

Applying a (nonlinear) transformation to a linear model

▶ Generalized linear models

f (x) = s

 d∑
j=1

wjxj


▶ Example: activation in a neural network layer
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Applications of the ℓ1 penalty

Applications of the ℓ1 penalty

Many types of problems can be rewritten as a sparse linear problem

Applying sparsity in a different subspace

▶ Transporting the weights

min
w
∥y − Hw∥22 + λ∥ϕ⊤w∥1
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Applications of the ℓ1 penalty Feature generation

Transforming the input variables into new features

Motivation
▶ linear models are highly interpretable BUT

▶ Not all data can be estimated/approached with linear regression/classification

▶ Feature construction is often done ”manually” and relies on experts
knowledge/ a priori

Random feature generation

▶ allows to automatically explore possible nonlinearities

▶ allows to explore features outside prior information
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Applications of the ℓ1 penalty Feature generation

Infinite feature learning

Features generated through Gabor filters, wavelets, Fourier, kernels, etc, with
continuous parameter θj , j = 1, . . . , d [Rakotomamonjy et al., 2013]

F = {{ϕθj (·)}dj=1}

f (x) =
d∑

j=1

wjϕθj (x) + bt

▶ Randomly draw d ′ filters/kernels with
different parameters θj

▶ Apply Lasso (or other sparse penalty)
to select the most relevant ones

▶ Repeat step 1 and 2 until convergence
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Applications of the ℓ1 penalty Feature generation

Infinite feature learning
Application: classification of pixels in remote sensing imagery [Tuia et al., 2014]

min
φ∈F

min
w

1

n
L(yi ,w

⊤Φφ(xi )) + λ∥w∥1

▶ Classes are types of land cover (one-vs-rest)

▶ Features generated through Gabor filters

▶ Different directions and sizes are selected depending on the class

Directions of roads Size of elements
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Applications of the ℓ1 penalty Feature generation

Symbolic Regression

ŷ =
√
X3·X9+sin(logX4+

√
X3)

Search models with analytical form

▶ Ability to model interactions between variables

▶ Ability to construct new features

▶ Good tradeoff between interpretability and
flexibility
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Applications of the ℓ1 penalty Feature generation

Symbolic Regression and ℓ1 penalty

Some SR algorithms randomly build features and
then linearly combine them with a sparse penalty to
select the most relevant ones

▶ features = bases in the form {op(Xi )}pi=1
▶ FFX – Fast Function eXtractor

[McConaghy, 2011]

▶ construct/evolve branches via genetic
programming (GP)
▶ MRGP – Multiple Regression GP

[Arnaldo et al., 2014]
▶ FEAT – Feature Engineering Automation

Tool [La Cava et al., 2018]
▶ ZGP – Zoetrope GP [Boisbunon et al., 2021]
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Applications of the ℓ1 penalty Feature generation

Compressed Sensing with random features

Universal encoding [Candes and Tao, 2006]

Motivation
▶ Reduce data acquisition, e.g. for Magnetic Resonance Imaging, or for

allowing satellite imaging with low transmission rates

▶ Ensure security in encoder-decoder

Principle

▶ Generate a collection of random vectors xk , e.g. random rows of Fourier or
random Gaussian vectors

▶ Share the collection (e.g. send the seed)

▶ Encoder part: yk =< f , xk > + apply quantization

▶ Decoder part: Lasso
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Applications of the ℓ1 penalty Feature generation

Compressed Sensing with random features

Single pixel imaging
[Gibson et al., 2020]

▶ cheaper sensors than traditional sensor arrays (e.g. for infrared)

▶ ability to detect weak light intensity changes
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Applications of the ℓ1 penalty ℓ1 penalty and Neural Networks

ℓ1 penalty and Neural Networks

Sparsity in neural networks

▶ In neural networks, we apply nonlinear transformations to linear models

▶ The linear layers in a neural network can also be sparsified through ℓ1
▶ limit overfitting
▶ concentrate the learning to the most important connexions between neurons

Using ℓ1 penalty with Keras

from tensorflow.keras import layers

from tensorflow.keras import regularizers

tf.keras.regularizers.l1(l1=0.01)

tf.keras.regularizers.l1_l2(l1=0.01, l2=0.01)
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Applications of the ℓ1 penalty ℓ1 penalty and Neural Networks

ℓ1 penalty and Neural Networks

Real-time applications

▶ Sometimes computing the sparse weights may be too long for real time
applications (e.g. in telecom)

Learning ISTA and CD [Gregor and LeCun, 2010]

▶ Run (F)ISTA/CD or your favorite algorithm on the dataset

▶ Train a neural network that predicts the results of the (F)ISTA/CD/etc

A. Boisbunon Practical Applications of the L1 penalty StatLearn, April 2022 68 / 80



Applications of the ℓ1 penalty Signal/Image processing

Signal/image processing

Denoising

y = x+ ε

▶ Aim: recover original signal x = Dw from noisy observations y

▶ D is a (fixed) dictionary

▶ Regular setting for Lasso

S
o
u
rc
e:

R
.
F
la
m
ar
y
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Applications of the ℓ1 penalty Signal/Image processing

Denoising with wavelets in Python
from skimage.restoration import denoise_wavelet

denoised_img = denoise_wavelet(noisy_img, wavelet='db1',

mode='soft', method='BayesShrink')
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Applications of the ℓ1 penalty Signal/Image processing

Signal/image processing

Reconstructing a signal

y = Hx+ ε

▶ Aim: recover original signal x = Dw from noisy observations y

▶ D is a (fixed) dictionary

▶ H is a known linear operator, e.g. convolution or blur operator
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Applications of the ℓ1 penalty Signal/Image processing

Application: object detection

Detection of objects (boats) from satellite images with fixed dictionary
[Boisbunon et al., 2014b]

▶ Y: matrix of size n ×m (image)

▶ Dk , k = 1, . . . ,K : dictionary atoms

▶ Xk : extremely sparse matrix of size n ×m
▶ xi,j,k ̸= 0 ⇒ position (i , j) activated for atom Dk

▶ Reconstructed image: Ỹ =
∑K

k=1 Xk ∗Dk
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Applications of the ℓ1 penalty Signal/Image processing

Application: object detection

Equivalence with linear problem

...
...

...

(1,1)

(50,2)

(30,11)(1,1)(50,2)

(30,11)

▶ Sum of convolutions: min
X∈Rn×m×K

+

{
∥Y −

∑K
k=1 Xk ∗Dk∥2F + λΩ(X)

}
▶ Linear problem: minx≥0

{
∥y − Fx∥22 + λΩ(x)

}
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Applications of the ℓ1 penalty Signal/Image processing

Application: object detection

Algorithm
2D Sparse Optimization (2DSO) with active set strategy

▶ Find the atom most correlated with image ⇒ shape + position

▶ Add the atom to active set

▶ Solve problem on a small active set2 (verify optimality conditions) and apply
transformation vector → matrix

ℓ1-penalty Log-sum penalty

2[Boisbunon et al., 2014a]
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Applications of the ℓ1 penalty Signal/Image processing

Dictionary learning

Aim: reconstruct X = DW with both D and W unknown

Optimization problem

min
W∈Rd×m,D∈Rn×d ,∥d∥j=1

∥Y −DW∥2F + λ

d∑
j=1

∥wj∥1

Algorithm
Start: W(0) = 0, D(0)

1. Extract patches from image

2. Repeat
▶ Solve optimization problem for W(l+1)

with D(l) fixed
▶ Solve optimization problem for D(l+1)

with W(l+1) fixed

until stopping rule. S
o
u
rc
e:

[B
a
ch

et
a
l.
,
2
0
1
1
]

A. Boisbunon Practical Applications of the L1 penalty StatLearn, April 2022 75 / 80



Applications of the ℓ1 penalty Signal/Image processing

Application: inpainting

Dictionary learning with a mask
[Mairal et al., 2008]

min
W∈Rd×m,D∈Rn×d ,∥d∥j=1

∥M⊙ (Y −DW)∥2F + λ

d∑
j=1

∥wj∥1

▶ M = binary mask of pixels we wish to recover

▶ ⊙ is the pointwise multiplication
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Applications of the ℓ1 penalty Signal/Image processing

Beurling Lasso

Input = Blurred observations from measuring devices

▶ Beurling allows to explore Diracs in continuous space

Reconstruct a discrete measure from noisy samples
[Azais et al., 2015]

min
µ
∥
∫

ϕdµ− y∥2 + λ∥µ∥TV

min
µ
∥ϕµ− y∥2 + λ|µ|(X )
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Concluding remarks

Other interesting works with sparse penalties

Some applications of ℓ1 I did not mention but are very interesting too:

▶ Selecting the k best singular value for matrix factorization, e.g. in
recommandation systems

▶ Analysis of spike trains in the brain with Hawkes processes
[Reynaud-Bouret et al., 2013]

▶ Sparse subspace clustering [Elhamifar and Vidal, 2013]

▶ Multitask learning

▶ Unbalanced optimal transport [Chapel et al., 2021]

and many more!
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Concluding remarks

Take-home messages

▶ ℓ1 penalty is everywhere!

▶ always try simple/classical approaches first (baseline)

▶ research is not always about new ideas, it can also be about how to adapt it
in a new framework/context
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Appendix

Pursuit algorithms

X = overcomplete dictionary of p atoms (wavelets, Gabor, Fourier), p > n

Matching pursuit [Mallat and Zhang, 1993]

min
w
∥y − Xw∥22 s.t. ∥w∥0 ≤ p∗,

regularization path where the coefficients are updated with wj = x⊤j y

Basis pursuit

min
w
∥w∥1 s.t. y = Xw

Basis pursuit denoising [Chen and Donoho, 1994]

min
w
∥w∥1 s.t. ∥y − Xw∥22 ≤ tλ

with tλ = σ
√

2 log(p) Jump to reg path slide
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